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Plan

• Hard Problems
• Approximation of NP-Complete Problems
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NP-hard Problems

• not believed to be “efficiently” solvable, i.e., in polynomial time
• NP-complete: many combinatorial/graph problems, satisfiability

of a propositional-logic formula (SAT)
• even harder: many problems in AI, verification, . . .

Today: What to do with NP-complete problems?

• more computational power?
• encode into SAT
• approximation algorithms
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Jan Křetı́nský: Fundamental Algorithms

The Last Chapter:Efficiency Beyond Efficiency, Winter 2017/18 3



Technical University of Munich

Travelling Salesman Problem

Definition (TSP)

Given a complete, weighted, undirected graph G = (V ,E) with
non-negative weights c : V → N, find a cycle that visits exactly all
nodes and does so with minimal length.

Properties
• We can assume triangle inequality:

∀u, v ,w ∈ V .c(u, v) ≤ c(u,w) + c(w , v)

• NP-complete
• We show a 2-approximation
• There is a 1.5-approximation
• There is no 123/122-approximation (since 2015)
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2-Approximation Algorithm for TSP

Algorithm
1. T := a minimum spanning tree
2. cycle := traverse along depth-first search of T, jumping over

visited nodes

Algorithm is
• polynomial
• 2-approximation

• c(T ) ≤ minimal cycle
• traversal costs 2 · c(T ) since jumping over costs at most the

sum of traversed edges
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Knapsack

Definition (TSP)

Given weight W of knapsack and weights and values of n items:
w1, . . . ,wm, v1, . . . , vn, pick I ⊆ {1, . . .} such that

∑
i∈I wi ≤W and∑

i∈I vi is maximal (under the previous constraint).

Greedy Algorithm
• take items in the order v1/w1 ≥ v2/w2 · · · ≥ vn/wn

Properties
• optimal for “fractional” knapsack problem
• for v1 = 1.001,w1 = 1, v2 = W ,w2 = W no better than a

W -approximation.
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Jan Křetı́nský: Fundamental Algorithms

The Last Chapter:Efficiency Beyond Efficiency, Winter 2017/18 6



Technical University of Munich

Knapsack

Definition (TSP)

Given weight W of knapsack and weights and values of n items:
w1, . . . ,wm, v1, . . . , vn, pick I ⊆ {1, . . .} such that

∑
i∈I wi ≤W and∑

i∈I vi is maximal (under the previous constraint).

Greedy Algorithm
• take items in the order v1/w1 ≥ v2/w2 · · · ≥ vn/wn

Properties
• optimal for “fractional” knapsack problem
• for v1 = 1.001,w1 = 1, v2 = W ,w2 = W no better than a

W -approximation.
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2-Approximation of Knapsack
Modified Greedy Algorithm (ModGreedy):

• S1 := solution by Greedy
• S2 := item with the largest value
• Return whichever of S1,S2 that has more value

Lemma

ModGreedy is a 2-approximation.

Proof.
• If Greedy takes items 1,2, . . . , k − 1, then∑k

i=1 vi ≥ OPT frac ≥ OPT : k th item might not be taken in full +
the optimal integral solution is not better than the optimal
fractional solution

• (v1 + · · ·+ vk−1) + vk ≥ OPT
• one of the two is ≥ OPT/2

• v(S1) =
∑k−1

i=1 vi , and v(S2) = vmax ≥ vk
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PTAS for Knapsack

• Polynomial-time approximation scheme (PTAS): any
approximation ratio possible

• Idea: brute-force a part of the solution and then use Greedy
Algorithm to finish up the rest

Algorithm, k fixed constant
• for all possible subsets of objects that have up to k objects:
• use the greedy algorithm to fill up the rest of the knapsack
• return the most profitable subset

Properties
• runtime O(knk ) subsets, filling up in O(n)
• thus total running time O(knk+1)

• (1 + 1
k )−approximation
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